Proceedings of the 12th International INQUA meeting on paleoseismology, active tectonic and archaeoseismology
R E F E R E N C E S Blanksma, D., Hazzard, J., Damjanac, B, Lam, T. and Kasani, H.A., (2022). Effect of fault reactivation on deformation of off-fault fractures near a generic deep geological repository in crystalline rock. Canada. Jour. Seismol. 26, 987–1002. Fälth, B., Hökmark, H., Lund, B., Mai, P.M., Roberts, R. and Munier, R., (2015). Simulating earthquake rupture and off- fault fracture response; Application to the safety assessment of the Swedish nuclear waste repository: Bull. Seismol. Soc. Amer. 105(1), 134-151. Hökmark, H., Fälth, B., Lönnqvist, M. and Munier, R., (2019). Earthquake simulations performed to assess the long-term safety of a KBS-3 repository; Overview and evaluation of results produced after SR-Site. SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO. (SKB), Technical Report TR-19-19, 105 p. IAEA (2021). An introduction to probabilistic fault displacement hazard analysis in site evaluation for existing nuclear installations: IAEA TECDOC-1987, Vienna, Austria, 131 p. King, T.R., Quigley, M. and Clark, D., (2019). Surface-rupturing earthquakes in Australia and their environmental effects; New insights from re- analyses of observational data. Geosciences 9, 408, doi:10.3390/ geosciences9100408, 34 p. McCalpin, J.P., (2024). Earthquake stationarity and distributed fault displacements, Forsmark repository site. Report 2024:02, Swedish Radiation Safety Authority, ISSN: 2000-0456, 205 p. Moss, R.E.S., Thompson, S., Kuo, C-H., Younesi, K., and Chao, S-H., (2022). Reverse Fault PFDHA. Report GIRS-2022-05, DOI : 10.34948/N3F595, Natural Hazards Risk & Resiliency Research Center, B. John Garrick Institute for the Risk Sci- ences. Univ. of California-Los Angeles, 124 p. (htt ps:\\risksciences. ucla. edu/girs-reports/2022/05) Nurminen, F., Boncio, P., Visini, F., Pace, B., Valentini, A., Baize, S. and Scotti. O. (2020). Probability of occurrence and displacement regression of distributed surface rupturing for reverse earthquakes. Front. Earth Sci. 8: 581605. Nurminen, F., Baize, S., Boncio, P., Blumetti, A.M., Cinti, F.R., Civico, R. and Guerrieri, L., (2022). SURE 2.0- New release of the worldwide database of surface ruptures for fault displacement hazard analyses. Nature Scientific Data, 9, p.1-18. Petersen, M., Dawson, T. E., Chen, R., Cao, T., Wills, C. J., Schwartz, D. P., and Frankel, A. D., (2011). Fault displacement hazard for strike- slip faults: Bull. Seismol. Soc. Am., 101, 805–825. Sarmiento, A. and 14 others, (2021). Fault Displacement Hazard Init iat ive Database. Natural Hazards Risk & Resi l iency Research Center, B. John Garrick Inst itute for the Risk Sciences, Repor t GIRS-2021- 08, University of Cal ifornia, Los Angeles, DOI : 10.34948/ N36P48, 94 p. plus Supplemental data f i les. Steffen, H., Olesen, O. and Sutinen, R. (eds.), (2022). Glacially- Triggered Faulting. Cambridge University Press, 460 p. Villani, F., Pucci, S., Civico, R., De Martini, P.M., Cinti, F.R. and Pantosti, D, (2018). Surface faulting of the 30 October 2016 Mw 6.5 Central Italy Earthquake: Detailed analysis of a complex coseismic rupture. Tectonics, 37, 3378–3410. Yoon, J.S. and Zang, A., (2019). 3D thermo-mechanical coupled modelling of thermo-seismic response of a fractured rock mass related to the final disposal of spent nuclear fuel and nuclear waste in hard rock. Stral Sakerhets Myndigheten (SSM) Report 2019-15, Stockholm, Sweden, 105 p. Youngs, R. R., and 24 others, (2003). A methodology for probabilistic fault displacement hazard analysis (PFDHA). Earthquake Spectra, 19, 191–219.
Made with FlippingBook
RkJQdWJsaXNoZXIy Mzc3MTg=