Proceedings of the 12th International INQUA meeting on paleoseismology, active tectonic and archaeoseismology
R E F E R E N C E S Silva, P.G., M.A Rodríguez-Pascua, R. Pérez-López, J.L. Giner- Robles, J. Lario, T. Bardají, J.L. Goy & C. Zazo, (2009). Geological and archaeological record of the 1504 AD Carmona earthquake (Guadalquivir Basin, South Spain): a review after Bonsor, 1918. In: Archaeoseismology and Palaeoseismology in the Alpine-Himalayan Collisional Zone (Pérez-López, R., Grützner, C., Lario, J., Reicherter, K., Silva, P.G. eds). Baelo Claudia, Spain, 139-142. Hinzen, K.-G., S. Schreiber & B. Yerli, (2010). The Lycian Sarcophagus of Arttumpara, Pinara (Turkey) -Testing Seismogenic and Anthropogenic Damage Scenarios. Bulletin of the Seismological Society of America 100 (6), 3148-3164. Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes. Cambridge University Press. Bronk Ramsey, C. (1995). Radiocarbon Calibration and Analysis of Stratigraphy: The OxCal Program. Radiocarbon, 37(2),425–430. https: //doi.org/10.1017/ S0033822200030903 Gunnels, M., Yetrimishli, G., Kazimova, S., & Sandvol, E. (2020). Seismotectonic evidence for subduction beneath the Eastern Greater Caucasus. Geophysical Journal International, 224(3), 1825–1834. https: //doi.org/10.1093/ gji/ggaa522 Jackson, J., Priestley, K., Allen, M., & Berberian, M. (2002). Active tectonics of the South Caspian basin. Geophysical Journal International. https: // doi.org/10.1046/j .1365- 246X.2002.01588.x Marshall, N., et al. (2024). Seismotectonic aspects of the Ms 7.3 1948 October 5 Aşgabat (Ashgabat) earthquake, Türkmenistan: right-lateral rupture across multiple fault segments, and continuing urban hazard, Geophysical Journal International, Volume 237, Issue 1, April 2024, McCaplin, J. P. (2009). Paleoseismology (2nd ed., Vol. 95). Academic Press. Pánek, T., Korup, O., Minár, J., & Hradecký, J. (2016). Giant landslides and highstands of the Caspian Sea. Geology, 44(11), 939–942. https://doi. org/10.1130/G38259.1 Rhodes, E. J. (2015). Dating sediments using potassium feldspar single- grain IRSL: Initial methodological considerations. Quaternary International, 362, 14–22. Trifonov, V. G., Vostrikov, G. A., Lykov, V. I ., Orazsakhatov, Kh., & Skobelev, S. F. (1986). TECTONIC ASPECTS OF THE 1983 KUM- DAG EARTHQUAKE, WEST TURKMENIA. International Geology Review, 28(4), 377–389. https: //doi. org/10.1080/00206818609466278 Wesnousky, S. G. (2008). Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, 98(4), 1609–1632. https: // doi.org/10.1785/0120070111 Zhang, H., Aldana-Jague, E., Clapuyt, F., Wilken, F., Vanacker, V., & Van Oost, K. (2019). Evaluating the potential of post- processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surface Dynamics, 7(3), 807–827. C O N C L U S I O N S We have shown geomorphic evidence for active right- lateral strike-slip faulting through the Kura basin of Azerbaijan, which accommodates lateral motion between the South Caspian Basin and adjacent onshore areas and forms a potential hazard to populations and infrastructure. We provide the first constraints on a Holocene geologic slip-rate of 3.9 – 4.8 mm/yr, based on the assumed age of an offset terrace. From paleoseismic trenching we show evidence for between four and seven paleo- earthquakes in the Holocene, with three of these events occurring within the last 600 years BP. The West Caspian Fault therefore shows irregular recurrence of slip events, with a distinct clustering in the last millennium. No large earthquakes are recorded in the region over this time frame, raising the possibility that the slip may have occurred aseismically, in events triggered by deeper seismicity or by fluid pressures in surrounding rocks.
Made with FlippingBook
RkJQdWJsaXNoZXIy Mzc3MTg=