Proceedings of the 12th International INQUA meeting on paleoseismology, active tectonic and archaeoseismology

304 PATA Days 2024 R E F E R E N C E S Abe, K. (1975). Reliable estimation of the seismic moment of large earthquakes. J. Phys. Earth, 23, 381–390. Chiou, B. S. J., & Youngs, R. R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24(1), 173–215. https: //doi. org/10.1193/1.2894832 Farag, T., Sobh, M., & Mizunaga, H. (2022). 3D constrained gravity inversion to model Moho geometry and stagnant slabs of the Northwestern Pacific plate at the Japan Islands. Tectonophysics, 829. https: //doi. org/10.1016/j.tecto.2022.229297 Geller, R. J. (1976). SCALING RELATIONS FOR EARTHQUAKE SOURCE PARAMETERS AND MAGNITUDES. Bulletin of the Seismological Society of America (Vol. 66). Kanamori , H. (1977). The energy release in great ear thquakes. Journal of Geophysical Research, 82(20), 2981–2987. https: //doi . org/10.1029/jb082i020p02981 Kanamori, H., & Anderson, D. L. (1975). THEORETICAL BASIS OF SOME EMPIRICALRELATIONS INSEISMOLOGY. Bulletin of the Seismological Society of America (Vol. 65). Kanamori, H., & Brodsky, E. E. (2004). The physics of earthquakes. Latorre, D., Di Stefano, R., Castello, B., Michele, M., & Chiaraluce, L. (2023). An updated view of the Italian seismicity from probabilistic location in 3D velocity models: The 1981–2018 Italian catalog of absolute earthquake locations (CLASS). Tectonophysics, 846. https://doi.org/10.1016/j. tecto.2022.229664 Leonard, M. (2014). Self-consistent earthquake fault- scaling relations: Update and extension to stable continental strike- slip faults. Bulletin of the Seismological Society of America, 104(6), 2953–2965. https: //doi. org/10.1785/0120140087 Moss, R. E. S., & Ross, Z. E. (2011). Probabilistic fault displacement hazard analysis for reverse faults. Bulletin of the Seismological Society of America, 101(4), 1542–1553. https: //doi. org/10.1785/0120100248 Nurminen, F., Baize, S., Boncio, P., Blumetti, A. M., Cinti, F. R., Civico, R., & Guerrieri, L. (2022). SURE 2.0 – New release of the worldwide database of surface ruptures for fault displacement hazard analyses. Scientific Data, 9(1). https: //doi.org/10.1038/ s41597-022-01835-z Pizza, M., Ferrario, M. F., Thomas, F., Tringali, G., & Livio, F. (2023). Likelihood of Primary Surface Faulting: Updating of Empirical Regressions. Bulletin of the Seismological Society of America. https: //doi.org/10.1785/0120230019 Sarmiento, A., Madugo, C. E. G. D., Bozorgnia, Y., Shen, P. E. A., Mazzoni, S., Lavrentiadis, G., et al. (2022). Fault Displacement Hazard Initiative Database. Los Angeles. https: //doi.org/10.34948/ N36P48 Takao, M., Tsuchiyama, J., Annaki, M., & Kurita, T. (2013). Application of Probabilistic Fault Displacement Hazard Analysis in Japan (Vol. 13). Japan Association for Earthquake Engineering. Thingbaijam, K. K. S., Mai, P. M., & Goda, K. (2017). New empirical earthquake source- scaling laws. Bulletin of the Seismological Society of America, 107(5), 2225–2246. https: //doi. org/10.1785/0120170017 Uchide, T., Shiina, T., & Imanishi, K. (2022). Stress Map of Japan: Detailed Nationwide Crustal Stress Field Inferred From Focal Mechanism Solutions of Numerous Microearthquakes. Journal of Geophysical Research: Solid Earth, 127(6). https: //doi.org/10.1029/ 2022JB024036 Wells, D. L., & Coppersmith, K. J. (1993). Likelihood of surface rupture as a function of magnitude. Seismological Research Letters, 64(1), 54. Yano, T. E., Takeda, T., Matsubara, M., & Shiomi, K. (2017). Japan unified high-resolution relocated catalog for earthquakes (JUICE): crustal seismicity beneath the Japanese Islands. Tectonophysics, 702, 19-28. Youngs, R. R., Eeri, M., Arabasz, W. J., Anderson, R. E., Ramelli, A. R., Ake, J. P., et al. (2003). A Methodology for Probabilistic Fault Displacement Hazard Analysis (PFDHA). https: //doi.org/https: / /doi. org/10.1193/1.15428 91

RkJQdWJsaXNoZXIy Mzc3MTg=