Innovación para la sostenibilidad: custodia ambiental del Parque Carén
144 CUSTOD I A AMB I ENTAL DEL PARQUE CARÉN CAPÍTULO 4/ SECCIÓN 2 74. Moore, J. F., Mulindahabi, F., Masozera, M. K., Nichols, J. D., Hines, J. E., Turikunkiko, E., & Oli, M. K. (2018). Are ranger patrols effective in reducing poaching-related threats within protected areas? Journal of Applied Ecology, 55(1), 99–107. https://doi. org/10.1111/1365-2664.12965 75. Stoner, C., Caro, T., Mduma, S., Mlingwa, C., Sabuni, G., Borner, M., & Schelten, C. (2006). Changes in large herbivore populations across large areas of Tanzania. Journal of Applied Ecology, 45, 202–2015. 76. Aubad, J., Aragón, P., Olalla-Tárraga, M. Á., & Rodríguez, M. Á. (2008). Illegal logging, landscape structure and the variation of tree species richness across North Andean forest remnants. Forest Ecology and Management, 255(5–6), 1892–1899. https://doi. org/10.1016/J.FORECO.2007.12.011 77. Khorrami, M., & Malekmohammadi, B. (2021). Effects of excessive water extraction on groundwa- ter ecosystem services: Vulnerability assessments using biophysical approaches. Science of the Total Environment, 799. https://doi.org/10.1016/J.SCITO- TENV.2021.149304 78. Megdal, S. B. (2018). Invisible water: the importance of good groundwater governance and management. npj CleanWater, 1(1). https://doi. org/10.1038/S41545-018-0015-9 79. Anandhi, A., & Kannan, N. (2018). Vulnera- bility assessment of water resources – Translating a theoretical concept to an operational framework using systems thinking approach in a changing climate: Case study in Ogallala Aquifer. Journal of Hydrology, 557, 460–474. https://doi.org/10.1016/J. JHYDROL.2017.11.032 80. McKay, S. F., & King, A. J. (2006). Potential ecological effects of water extraction in small, unreg- ulated streams. River Research and Applications, 22(9), 1023–1037. https://doi.org/10.1002/RRA.958 81. Pimentel, D., & Kounang, N. (1998). Ecology of soil erosion in ecosystems. Ecosystems, 1(5), 416–426. https://doi.org/10.1007/S100219900035 82. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and eco- nomic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. https://doi.org/10.1126/SCI- ENCE.267.5201.1117 83. Polykretis, C., Alexakis, D. D., Grillakis, M. G., Agapiou, A., Cuca, B., Papadopoulos, N., & Sarris, A. (2021). Assessment of water-induced soil erosion as a threat to cultural heritage sites: the case of Cha- nia prefecture, Crete Island, Greece. Big Earth Data. https://doi.org/10.1080/20964471.2021.1923231 84. Belskyt, A. J., & Blumenthal, D. M. (1997). Effects of Livestock Grazing on Stand Dynamics and Soils in Upland Forests of the Interior West. Conservation Biology, 11(2), 315–327. 85. Holmgren, M., Avilés, R., Sierralta, L., Segura, A. M., & Fuentes, E. R. (2000). Why have European herbs so successfully invaded the Chilean matorral? Effects of herbivory, soil nutrients, and fire. Journal of Arid Environments, 44(2), 197–211. https://doi.org/10.1006/ JARE.1999.0589 86. Pia, M. V., López, M. S., & Novaro, A. J. (2003). Effects of livestock on the feeding ecology of en- demic culpeo foxes (Pseudalopex culpaeus smith- ersi) in central Argentina. Revista Chilena de Historia Natural, 76(2), 313–321. https://doi.org/10.4067/S0716- 078X2003000200015 87. Fuentes, E. R., Avilés, R., & Segura, A. (1989). Landscape change under indirect effects of human use: the Savanna of Central Chile. Landscape Ecology, 2(2), 73–80. https://doi.org/10.1007/BF00137151 88. Robertson, A. (1997). The effect of livestock on wetlands. Wetlands in a dry land: Understanding for management, 195–201. 89. Julio, G. (2015). Manual de Manejo del Fuego (G. Julio (ed.); Octava). 90. Castillo, M. (2010). Daños y efectos del fuego sobre vegetación nativa en paisajes costeros de Chile Central. Estudio de caso: la palma chilena. Geo- graphicalia, 57(57), 107–127. https://doi.org/10.26754/ OJS_GEOPH/GEOPH.201057812 91. Úbeda, X., & Sala, M. (1998). Variation in runoff and erosion in three areas with different fire intensi- ties. Geoökodynamik, 19, 179–188.
Made with FlippingBook
RkJQdWJsaXNoZXIy Mzc3MTg=