Innovación social y pública: experiencias y aproximaciones a la complejidad contemporánea

CAPÍTULO VIII. Innovación socio-tecnológica Experiencias y aproximaciones a la complejidad contemporánea INNOVACIÓN SOCIAL y PÚBLICA 758 Graells-Garrido, E., Peredo, O., y García, J. (2016). Sensing urban patterns with antenna mappings: The case of Santiago, Chile. Sensors, 16, 1098. Graells-Garrido, E., y Saez-Trumper, D. (2016). A day of your days: Estimating individual daily journeys using mobile data to understand urban flow. 1–7. Green, B., y Chen, Y. (2019). The principles and limits of algorithm-in-the-loop decision making. 3, 1–24. Gschwender, A., Munizaga, M., y Simonetti, C. (2016). Using smart card and GPS data for policy and planning: The case of Transantiago. Competition and Ownership in Land Passenger Transport (Selected Papers from the Thredbo 14 Conference), 242–249. Heer, J., y Agrawala, M. (2008). Design considerations for collaborative visual analytics. Information Visualization, 7, 49–62. Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., y Möller, T. (2013). A systematic review on the practice of evaluating visualization. IEEE Transactions on Visualization and Computer Graphics, 19, 2818–2827. Kim, B., Khanna, R., y Koyejo, O. O. (2016). Examples are not enough, learn to criticize! Criticism for interpretability. En Advances in Neural Information Processing Systems (pp. 2280–2288). Kim, Y. S., Reinecke, K., y Hullman, J. (2017). Explaining the gap: Visualizing one’s predictions improves recall and comprehension of data. 1375–1386. Krause, J., Perer, A., y Ng, K. (2016). Interacting with predictions: Visual inspection of black-box machine learning models. 5686–5697. Kuniavsky, M. (2003). Observing the user experience: A prac- titioner’s guide to user research. Morgan Kaufmann.

RkJQdWJsaXNoZXIy Mzc3MTg=