Innovación social y pública: experiencias y aproximaciones a la complejidad contemporánea

CAPÍTULO VIII. Innovación socio-tecnológica 757 Experiencias y aproximaciones a la complejidad contemporánea INNOVACIÓN SOCIAL y PÚBLICA Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3, 274–279. Bettencourt, L. M. (2014). The uses of big data in cities. Big Data, 2, 12–22. Black, J. (2018). Urban transport planning: Theory and prac- tice (Vol. 4). Routledge. Blondel, V. D., Decuyper, A., y Krings, G. (2015). A survey of results on mobile phone datasets analysis. EPJ Data Science, 4, 10. Cao, L. (2017). Data science: Challenges and directions. Com- munications of the ACM, 60, 59–68. Castelvecchi, D. (2016). Can we open the black box of AI? Na- ture News, 538, 20. Chen, C., Ma, J., Susilo, Y., Liu, Y., y Wang, M. (2016). The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies, 68, 285–299. Endert, A., Andrews, C., Lee, Y. H., y North, C. (2011). Visual encodings that support physical navigation on large displays. Proceedings of Graphics Interface. Giest, S. (2017). Big data for policymaking: Fad or fasttrack? Policy Sciences, 50, 367–382. Graells-Garrido, E., y Caro Alarcón, D. (2020). Patent no. WO2020093181A1. Graells-Garrido, E., Caro, D., y Parra, D. (2018). Inferring modes of transportation using mobile phone data. EPJ Data Science, 7, 49. Graells-Garrido, E., Peña-Araya, V., y Bravo, L. (2020). Adop- tion-driven data science for transportation planning: Metho- dology, case study, and lessons learned. Sustainability, 12, 6001.

RkJQdWJsaXNoZXIy Mzc3MTg=