Innovar y transformar desde las disciplinas: experiencias claves en la educación superior en América Latina y el Caribe 2021-2022

3 como la motivación intrínseca de los estudiantes de la carrera de Biología. Estos resultados son un compromiso al mejoramiento continuo de las actividades, y la adaptación a las nuevas opciones curriculares, las tendencias científicas y los gustos y preferencias de los estudiantes, en aras de facilitar la formación de los biólogos del futuro. 5 Bibliografía Aikens, M. L., y Dolan, E. L. (2014). Teaching quantitative biology: goals, assessments, and resources. Molecular Biology of the Cell , 25 (22), 3478-3481. https://doi.org/10.1091/mbc.e14-06-1045 Allen, D., y Tanner, K. (2003). Approaches to Cell Biology teaching: Learning content in Context—Problem-Based Learning. Cell Biology Education , 2 (2), 73-81. https://doi.org/10.1187/cbe.03-04-0019 Apkarian, N., Henderson, C., Stains, M., Raker, J., Johnson, E., y Dancy, M. (2021). What really impacts the use of active learning in undergraduate STEM education? Results from a national survey of chemistry, mathematics, and physics instructors. PLOS ONE , 16 (2), e0247544. https://doi.org/10.1371/journal.pone.0247544 Armbruster, P., Patel, M., Johnson, E., y Weiss, M. (2009). Active Learning and Student-centered Pedagogy improve student attitudes and performance in Introductory Biology. CBE—Life Sciences Education , 8 (3), 203–213. https://doi.org/10.1187/cbe.09-03-0025 Barral, A. M., Ardi-Pastores, V. C., y Simmons, R. E. (2018). Student learning in an Accelerated Introductory Biology course is significantly enhanced by a Flipped-Learning Environment. CBE—Life Sciences Education , 17 (3), ar38. https://doi.org/10.1187/cbe.17- 07-0129 Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher Education , 32 (3), 347-364. https://doi.org/10.1007/BF00138871 Cañibano, C., Woolley, R., Iversen, E. J., Hinze, S., Hornbostel, S., y Tesch, J. (2019). A conceptual framework for studying science research careers. The Journal of Technology Transfer , 44 (6), 1964–1992. https://doi.org/10.1007/s10961-018-9659-3 Cartagena, Y. G., González, D. S. M. R., y Oviedo, F. B. (2017). Actividades STEM en la formación inicial de profesores: nuevos enfoques didácticos para los desafíos del siglo XXI. Diálogos educativos , (33), 35–46. Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=6212470 Chamany, K., Allen, D., y Tanner, K. (2008). Making Biology Learning Relevant to Students: Integrating People, History, and Context into College Biology Teaching. CBE—Life Sciences Education , 7 (3), 267-278. https://doi.org/10.1187/cbe.08-06-0029 Chang, S.-C., Hsu, T.-C., y Jong, M. S.-Y. (2020). Integration of the peer assessment approach with a virtual reality design system for learning earth science. Computers & Education , 146 , 103758. https://doi.org/10.1016/j.compedu.2019.103758 Compeau, P. (2019). Establishing a computational biology flipped classroom. PLOS Computational Biology , 15 (5), e1006764. https://doi.org/10.1371/journal.pcbi.1006764 Connolly, M. R. (2006). Using workshops to improve instruction in STEM courses. Metropolitan Universities , 17 (4), 53-65. Cooper, M. M., Caballero, M. D., Ebert-May, D., Fata-Hartley, C. L., Jardeleza, S. E., Krajcik, J. S., … Underwood, S. M. (2015). Challenge faculty to transform STEM learning. Science , 350 (6258), 281-282. https://doi.org/10.1126/science.aab0933 Denny Muhammad Fajar, Ramli, M., Ariyanto, J., Widoretno, S., Sajidan, S., y Prasetyanti, N. 437

RkJQdWJsaXNoZXIy Mzc3MTg=