Rutas hidrológicas : recordando a un colega por los senderos de la hidrología
R ECORDANDO A UN COLEGA POR LOS SENDEROS DE LA HIDROLOGÍA R UTAS H IDROLÓGICAS 44 Environ. Model. Softw. 94, 166–171. https://doi.org/10.1016/j.envsoft.2017.05.002 DeWalle, D.R., Rango, A., 2008. Principles of snow hydrology. Cambridge University Press. DGA, 2019. Aplicación de la metodología de actualización del balance hídrico nacional en las cuencas de la parte sur de la Macrozona Autral e Isla de Pascua, SIT N° 444. DGA, 2017. Actualización del Balance Hídrico Nacional, SIT N° 417, Ministerio de Obras Públicas, Dirección General de Aguas, División de Estudios y Planificación, Santiago, Chile. Realizado por: Universidad de Chile & Pontificia Universidad Católica de Chile. DGA, 2016. Nuestra Agua, in: Atlas Del Agua Chile 2016. p. 64. Driessen, T.L.A., Hurkmans, R.T.W.L., Terink, W., Hazenberg, P., Torfs, P.J.J.F., Uijlenhoet, R., 2010. The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model. Hydrol. Earth Syst. Sci. 14, 651–665. https://doi.org/10.5194/hess-14-651-2010 Duan, Q., Gupta, V., 1992. Effective and Efficient Global Optimization for conceptual rainfall-runoff models. Water Resour. Res. 28, 1015–1031. Emerton, R., Zsoter, E., Arnal, L., Cloke, H.L., Muraro, D., Prudhomme, C., Stephens, E.M., Salamon, P., Pappenberger, F., 2018. Developing a global operational seasonal hydro- meteorological forecasting system: GloFAS-Seasonal v1.0. Geosci. Model Dev. 11, 3327–3346. https://doi.org/10.5194/gmd-11-3327-2018 Fowler, K., Peel, M., Western, A., Zhang, L., 2018. Improved Rainfall- Runoff Calibration for Drying Climate: Choice of Objective Function. Water Resour. Res. 54, 3392–3408. https://doi.org/10.1029/2017WR022466 Garreaud, R., Alvarez-Garreton, C., Barichivich, J., Boisier, J.P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., Zambrano-Bigiarini, M., 2017. The 2010-2015 mega drought in Central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. Discuss. 1–37. https://doi.org/10.5194/hess-2017-191 Givati, A., Thirel, G., Rosenfeld, D., Paz, D., 2019. Climate change impacts on streamflow at the upper Jordan River based on an ensemble of regional climate models. J. Hydrol. Reg. Stud. 21, 92–109. https://doi.org/10.1016/j.ejrh.2018.12.004 Gupta, H. V, Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 377, 80–91. Harrigan, S., Prudhomme, C., Parry, S., Smith, K., Tanguy, M., 2018. Benchmarking ensemble streamflow prediction skill in the UK. Hydrol. Earth Syst. Sci. 22, 2023–2039. https://doi.org/10.5194/hess-22-2023-2018 Hrachowitz, M., Clark, M.P., 2017. HESS Opinions: The complementary merits of competing modelling philosophies in hydrology. Hydrol. Earth Syst. Sci. 21, 3953–3973. https://doi.org/10.5194/hess-21-3953-2017 Hublart, P., Ruelland, D., García De Cortázar Atauri, I., Ibacache, A., 2015. Reliability of a conceptual hydrological model in a semi- arid Andean catchment facing water-use changes. Proc. Int. Assoc. Hydrol. Sci. 371, 203–209. https://doi.org/10.5194/piahs-371-203-2015 Kavetski, D., Kuczera, G., Franks, S.W., 2006. Calibration of conceptual hydrological models revisited: 2. Improving optimisation and analysis. J. Hydrol. 320, 187–201. https://doi.org/10.1016/j.jhydrol.2005.07.013 L’hôte, Y., Chevallier, P., Coudrain, A., Lejeune, Y., Etchevers, P., 2005. Relationship between precipitation phase and air temperature: comparison between the Bolivian Andes and the Swiss Alps / Relation entre phase de précipitation et température de l’air: comparaison entre les Andes Boliviennes et les Alpes Suisses. Hydrol. Sci. J. 50. https://doi.org/10.1623/hysj.2005.50.6.989 Liu, Z., Wang, Y., Xu, Z., Duan, Q., 2017. Conceptual Hydrological Models. Handb. Hydrometeorol. Ensemble Forecast. 1–23. https://doi.org/10.1007/978-3-642-40457-3_22-1 Nash, J.E., Sutcliffe, J. V, 1970. River flow forecasting through conceptual models part I — A discussion of principles. J. Hydrol. 10, 282–290. https://doi.org/https :// doi.org/10.1016/0022-1694( 70)90255-6 Newman, A.J., Clark, M.P., Sampson, K., Wood, A., Hay, L.E., Bock, A., Viger, R.J., Blodgett, D., Brekke, L., Arnold, J.R., Hopson, T., Duan, Q., 2015. Development of a large-sample watershed- scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance. Hydrol. Earth Syst. Sci. 19, 209–223. https://doi.org/10.5194/hess-19-209-2015 Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., Loumagne, C., 2005. Which potential evapotranspiration input for a lumped rainfall–runoff model? J. Hydrol. 303, 290– 306. https://doi.org/10.1016/j.jhydrol.2004.08.026 Ouyang, S., Puhlmann, H., Wang, S., von Wilpert, K., Sun, O.J., 2014. Parameter uncertainty and identifiability of a conceptual semi- distributed model to simulate hydrological processes in a small headwater catchment in Northwest China. Ecol. Process. 3, 1– 17. https://doi.org/10.1186/s13717-014-0014-9 Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 279, 275–289. https://doi.org/http :/ /dx.doi.org/10.1016/S0022- 1694(03)00225-7 Pool, S., Vis, M.J.P., Knight, R.R., Seibert, J., 2017. Streamflow characteristics from modeled runoff time series - Importance of calibration criteria selection. Hydrol. Earth Syst. Sci. 21, 5443– 5457. https://doi.org/10.5194/hess-21-5443-2017 Prudhomme, C., Hannaford, J., Harrigan, S., Boorman, D., Knight, J., Bell, V., Jackson, C., Svensson, C., Parry, S., Bachiller-Jareno, N., Davies, H., Davis, R., Mackay, J., McKenzie, A., Rudd, A., Smith, K., Bloomfield, J., Ward, R., Jenkins, A., 2017. Hydrological Outlook UK: an operational streamflow and groundwater level forecasting system at monthly to seasonal time scales. Hydrol. Sci. J. 62, 2753–2768. https://doi.org/10.1080/02626667.2017.1395032 Qu, Y., Duffy, C.J., 2007. A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour. Res. 43, 1–18. https://doi.org/10.1029/2006WR005752 Rakovec, O., Weerts, A.H., Sumihar, J., Uijlenhoet, R., 2015. Operational aspects of asynchronous filtering for flood forecasting. Hydrol. Earth Syst. Sci. 19, 2911–2924. https://doi.org/10.5194/hess-19-2911-2015 Skøien, J.O., Blöschl, G., Laaha, G., Pebesma, E., Parajka, J., Viglione, A., 2014. Rtop: An R package for interpolation of data with a variable spatial support, with an example from river networks. Comput. Geosci. 67, 180–190. https://doi.org/10.1016/j.cageo.2014.02.009 Sorooshian, S., Gupta, V.K., 1986. Improving the Reliability of Compartmental Models : Case of Conceptual Hydrologic Rainfall-Runoff Models. Thober, S., Kumar, R., Sheffield, J., Mai, J., Schäfer, D., Samaniego, L., 2015. Seasonal soil moisture drought prediction over Europe using the North American Multi-Model Ensemble (NMME). J. Hydrometeorol. 16, 2329–2344. https://doi.org/10.1175/JHM-D-15-0053.1 Thyer, M., Renard, B., Kavetski, D., Kuczera, G., Franks, S.W., Srikanthan, S., 2009. Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis.
Made with FlippingBook
RkJQdWJsaXNoZXIy Mzc3MTg=